
Object-disOriented
Dennis Brylow

Marquette University

Programming in the Large
“We argue that structuring a large collection of

modules to form a system is an essentially distinct
and different intellectual activity from that of
constructing individual modules. ...
Correspondingly, we believe that essentially
distinct and different languages should be used
for the two activities.”

-- DeRemer and Kron, IEEE Transactions on Software Engineering, 1976.

A New Paradigm
Simula had introduced Object-Orientation in the
1960's, but it didn't really catch on until
Smalltalk in the 1980's.
OOP achieved mainstream acceptance with C++.
Java combined OOP with a strong type system,
garbage collection, familiar syntax, and a vast
library.

Terminator 3:
Rise of the Virtual Machines

By late 1990's Java had supplanted Pascal and
C/C++ as the dominant language in introductory
computing courses.
Some taught the “Pascal subset” of Java.
Others sought to leverage Java's advanced
features to rethink what was foundational in
teaching software design.

“Objects First”
Concentrate on top-down design of the system,
breaking into logically grouped objects with well-
defined interfaces and internal, protected state.
Inheritance relates objects with similar state or
behavior, minimizing code duplication and
simplifying maintenance.
Skip the “Art of Writing Small Programs Badly”.

Who is this fringe lunatic?
BS Computer Science and BS Electrical Engineering from Rose-
Hulman

Ph.D from Purdue (Static Analysis of Interrupt-Driven Software)

Decade of experience teaching undergraduate computer science:
CS180 (5 terms), CS240 (2 terms), CS352 (2 terms), ECE 469 (1
term), COSC 065 (4 terms), COSC 125 (2 terms), COSC 152 (3
terms), COSC 170 (1 term), etc.

Proponent of bottom-up, systems-oriented coursework on practical
software problem solving.

What's Wrong With Java First?
In a first semester, beginners:

Won't understand objects;
Won't understand inheritance;
Can't follow complex asynchronous control flow
before they've mastered simple control flow;
Can't break problems into discrete methods
because they don't know what's in a method.

So, What Should Come First?
Small Language
Representation
Functional Decomposition, Algorithmic Thinking
Fundamental capabilities of machine computation
Discipline and methodology that will remain
valuable even when the dominant language
paradigm shifts again.

Tools For the Future
What do we teach that will still be relevant in
five years, perhaps in another field altogether?

Methodical problem solving
The algorithmic building blocks common to all
computer languages
How to learn about complex technology.

“Everything should be built top-down...
except the first time.”

Programming-in-the-small is tedious, challenging
work that we all would like to have skipped in
order to move on to the really exciting stuff.

But some mistakes need to be made the hard way in
order to learn the really valuable lesson.

