Topics for Today

- Overview of next four projects
- Plotting Libraries
 - MatPlotLib
 - VPython
- Digital Audio

Reading
- MatPlotLib Tutorial: http://matplotlib.sourceforge.net/tutorial.html
- VPython plotting http://www.vpython.org/webdoc/visual/graph.html

Projects

- **Digital Audio**
 - Handed out February 1
 - Submitted in two parts: writing basic functions and creating sounds
 - Arrays and loops; complete functions from specifications; create your own sounds

- **Percolation**
 - Handed out February 15
 - Submitted in two parts: writing functions and running experiments
 - Reusable functions, recursion, evaluating computational experiments
Projects

- **Simulating Physical Systems**
 - Handed out February 29
 - Submitted in two parts: ideal gas simulation and Ising spin simulation
 - Monte Carlo simulations (i.e., use random sampling to compute results) and visualizations of system behavior

- **Analyzing Biological Processes**
 - Handed out March 21
 - Use a data set generated by an experiment to identify protein-protein interactions
 - http://www.nature.com/nature/journal/v415/n6868/full/415141a.html

- **Project 5 tbd**

Reminder!

EXAM 1

- Wednesday, February 13, 7-8pm
- Location: MJIS 1001 (Biomedical Engineering Bld.)
- MJIS is across State Street in Discovery Park
Matplotlib (MPL)

- `from pylab import *`
- Matplotlib is a powerful Python 2D plotting library generating plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc, with just a few lines of code
- Plots can be saved in many file formats
 - useful in other courses and projects)
- Plot is drawn using `show()`
 - this needs to be the last statement of your program

Clicker Question 1 (participation only)

What plotting software have you used before?

A. None
B. MS Excel
C. MatLab/Mathematica/Maple
D. VPython
E. Other
Matplotlib versus VPython

- In many ways, Matplotlib is a more complete plotting library than VPython
- VPython has 3D features and interactive features missing in MPL

Matplotlib versus Matlab

- Plotting in MPL is very similar to Matlab
- MPL integrates with Python which can be an advantage
- Matlab is not a free software
MPL use in course

- Simple plots
- Bar graphs
- Histograms

- Most control of visuals is optional
- Add basic text and labels
- Computed data will generally be in an array
- Use when no dynamic updates should be seen and plot is generated at end of computation

Future value program (Zelle p 44)

```python
# futval.py
# A program to compute the value of an investment
# carried 10 years into the future

def main():
    print "This program calculates the future value"
    print "of a 10 year investment."

    principal = input("Enter the initial principal: ")
    apr = input("Enter the annualized interest rate: ")

    for i in range(10):
        principal = principal * (1 + apr)

    print "The value in 10 years is: ", principal

main()
```
Clicker Question 2

```python
>>> my_list = ['a', 'b', [4, 5], 'x']
>>> print my_list[2:]
```

A. `[[4, 5], 'x']`
B. `[4, 5, 'x']`
C. `['b', [4, 5], 'x']`
D. `[4, 5]`

Clicker Question 3

```python
>>> p
[[1, 1, 3], [4, 6, 0], [2, 5, -2], [2, 2, 2]]
>>> print len(p[0]), len(p)
```

A. `1 4`
B. `[3, 4]`
C. `3 4`
D. `3, 3`
Graphing the yearly value

- Show as plot
 - X-axis: value
 - Y-axis years
- Show as bar graph
 - One year as one bar (assuming not too many years)

```python
from pylab import *
from numpy import *

principal = 10000
apr = 5
years = 10
values = zeros(years)
apr = (100+apr)/100.

for i in range(years):
    values[i] = principal
    principal = apr*principal

# show a MPL plot; use default values
plot(range(years), values)
show()
```
More on graphing future values

- Bar graph
 - replace `plot(range(years),values)` with `bar(range(years),values)`
- file `MPL_interest_bar1.py`

More customization
- file `MPL_interest_bar2.py`
- Give graph a name
- Label x and y coordinate, make a title

Another MPL plotting example

```python
def plot_three():
    t = arange (0.0, 20.1, 0.1)
    s = range(21)
    # plot three functions
    plot (s, s, t, 2*t, "rs", t, t**t, 'go')
    xlabel("input size")
    ylabel("time")
    ti = title("Plotting three functions")
    ti.set_color("r")
    ti.set_fontsize(14)
    ti.set_fontweight("bold")

if __name__ == '__main__':
    plot_three()
    show()
```

MPLplots.py
Making subplots in MPL

```python
def mysubplots():
    t = arange (0.0, 20.1, .1)
    s = range(21)

    # define first figure
    subplot(211)  # final figure has 2 rows, 1 column
    plot (s, s, t, 2*t, "r+", t, t*t, 'go')
    xlabel("input size")
    ylabel("time")
    title("Plotting three runtime functions")

    # define second figure
    subplot(212)
    plot (t, sin(2*pi*t))
```

Histograms

```python
hist(x, bins=10, ...)
```
- computes the histogram of x
- bins is either an integer number or a sequence giving the bin
- returns (n, bins, patches)

Look up commands at

http://matplotlib.sourceforge.net/pylab_commands.html
MPL Histogram example

```python
v=[1,1,1,2,3,4,4,5,7,7,7,7,10,12,12,12,12,13,13,15,22,22,25]

# the histogram of the data in v
n, bins, patches = hist(v, 10)
    # n is an array with the frequencies

setp(patches, 'facecolor', 'g')
xlabel('v')
ylabel('Counts')
title('Data set v')
```

Plotting in VPython

```python
from numpy import *
from visual.graph import * # import graphing features

funct1 = gcurve(color=color.cyan)

for x in arange(0., 8.1, 0.1): # x goes from 0 to 8
    funct1.plot(pos=(x, 5.*cos(2.*x)*exp(-0.2*x))) # plot

pos=(x,y) adds points to the plot shown in the display
Future value plotting with VPython

- **VPinterest-2d.py**: sort of boring
- **VPinterest-3d.py**: placing text is tedious
- **VPinteractive_interest2d.py**: example of a slider interface
- **VPinteractive_interest3d.py**: sort of overkill