Educating problem-solving skills for Bioinformatics research

Haixu Tang

School of Informatics, Indiana University
What skills are we looking for?

Technical Skills:
- Languages: Java, SQL, PL/SQL, C,C++, HTML, PHP, JavaScript, JSP, VB(.Net), XML.
- Tools: Eclipse, Toad, MS-Office softwares, MS Visual Studio, Dreamweaver.
- Servers: Weblogic, WebSphere, JBoss

Technical Skills:
- Computer Languages & Technologies: Core Java, J2EE, Swings, Struts, Servlets, EJBs, JSP, PL/SQL, XML, IBM Portlets, JSR 168 Portlets, Hibernate, Collections Framework, JDBC, RMI, Tiles, AJAX, UML, Teamsite, LDAP, Siteminder.
 - Application Servers: WebSphere Application Server (WAS), ColdFusion, WebSphere Portal Server (WPS5.1), Oracle9ias Application Server and BEA Weblogic Application Server.
 - Databases: Oracle8i & 9i, Microsoft Access.
 - Web Designing & Tools: HTML, DHTML (Dynamic), JavaScript, Extensible Stylesheet Language Family (XSL), Cascading Style Sheets (CSS), Document Object Model (DOM), Macromedia Dreamweaver.
 - Job Schedulers: Appworx 5.1 & Autosys.
 - Load Runner: Mercury Load Runner, JUnit.

Software Tools: WebSphere Studio Application Developer (WSAD), Rational Application Developer (RADv6), TOAD8.6 (for Oracle), Lotus Notes, SSH Client, Remedy, Rational Rose, Edit Plus 2, Textpad & JAD Decomplier

SECANT Workshop, Purdue University, 10/30/2008
What is missing?
technique skills vs. problem solving skills

• Information technology
 – Programming-driven
 – Many inexperienced users
 – Robust, user-friendly, scalable, modular
 – General models
 – Challenge: engineering

• Scientific computing
 – Problem-driven
 – A few experienced users
 – Accurate, efficient, specific (often novel) models
 – Challenge: problem solving

Domain knowledge is not a hurdle (at least in bioinformatics): teaching a computer scientist biology is usually easier than teaching a biologist computer science.

SECANT Workshop, Purdue University, 10/30/2008
Genome science: a revolution in biology

- Classical Biology
 - Hypothesis
 - Data
 - Knowledge
 - Hypothesis driven approach

- Genome Science
 - Data
 - Hypothesis
 - Knowledge
 - Data driven approach

SECANT Workshop, Purdue University, 10/30/2008
Bioinformatics: in the driving seat

- Classical Biology
- Data analysis

Hypothesis
↓
Data
↓
Knowledge

Hypothesis driven approach

- Genome Science
- Data mining

Data
↓
Hypothesis
↓
Knowledge

Data driven approach

SECANT Workshop, Purdue University, 10/30/2008
Problem solving skills for bioinformatics research

• Key: computational thinking about the data
 – High dimension & large amount
 – Objective: generating hypothesis

• Examples
 – Data visualization
 – Simulation
 – Data mining: rule discovery, classification, clustering, etc
 – Statistics: hypothesis testing, etc
 – Modeling: probabilistic modeling, etc
Data visualization

• What plot?
 – Scatter plot, bar plot, distribution, heat map

• Data representation
 – Vector, binning (density), ratio (log ratio)

• High dimension data

• Inhomogeneous data
 – Data integration

• Applying domain knowledge
Computational thinking vs. quantitative (mathematical) thinking

• Data-centered vs. hypothesis centered
• Statistics
 – Hypothesis tests
 • Model-based
 • Parametric vs. non-parametric
 – Permutation tests: simulation
• Modeling
 – Theoretical (i.e. mathematical) models
 • analytic solutions
 – Simulated models
 • Numerical solutions
 – Probabilistic models
 • NN, HMM, BN, etc.
Genome science: key advancements

• High throughput biotechnologies
 – Genome sequencing techniques
 – DNA microarray
 – Mass spectrometry
• Large-scale experiments
 – HGP, HapMap
 – Omics / Systems Biology
• Massive data generation, storage, exchange and analysis
 – Bioinformatics