Modeling at Oberlin

Richard Salter
Chair, Department of Computer Science
Oberlin College

NSF Workshop on Science Education in Computational Thinking
November 15-16, 2007
Purdue University, West Lafayette IN

OCCaM

Oberlin Center for Computation and Modeling

Goals
- Increase proficiency and application of modeling in the curriculum at Oberlin.
- Build and support a modeling community at the college.

Activities
- National conference in 2005
- Campus speakers
- Promotes curriculum development
- Spearheads the creation of a Concentration in Modeling
OCCaM (cont’d)

- Departments represented:
 - Biology, Chem/Biochem, CS, Geology, Math, Physics/Astronomy, Neuroscience …
 - … also Economics, Environmental Studies

- Grants
 - Booth-Ferris Foundation
 - NSF S-Stem

Modeling Courses

- Math:
 - Optimization
 - Dynamical Systems
 - Seminar in Mathematical Modeling

- Physics/Astronomy
 - Intro to Climate Modeling

- Economics
 - Computer Spreadsheets for Economists
 - Games and Strategy in Economics
 - Agent-based Computational Economics

- Neuroscience
 - Neurons to Networks to Cognition

- Environmental Studies
 - Systems Modeling

- Biology
 - Evolution
 - Population Genetics
 - Behavioral Ecology

- Geology
 - Modern Mapping Technologies

- Computer Science
 - Scientific Computation
 - Computational and Agent-Based Modeling
Computational & Agent-Based Modeling

- Enrolled 15 (mostly) juniors-seniors
 - Natural or social science majors
 - Decent math background
 - Little or no computer programming

- Designed to give exposure to a variety of modeling milieus (and tools).
 - Dynamical systems (Stella)
 - Approximation (MatLab)
 - Agent-based models (NetLogo)

Final Project

- Groups of 1-4 worked for a half-semester on mostly agent-based modeling projects from their major areas.

- Three TA’s recruited from U. of Michigan Center for the Study of Complex Systems
 - Physics (Nanotechnology)
 - Biology (Public Health / Epidemiology)
 - Social Science
Project Titles

(visit http://www.cs.oberlin.edu/~rms/models)

- Cancer Growth and Treatment
- Voting and the Spread of Information
- Modeling Water-based Soil Erosion
- Commercial Timing
- Optimal Timing of TV commercials
- HIV Transmission in a Small Open Population
- A Subway Challenge
- Migration of Homo erectus
- Modeling the Solar System

Conclusion

- Right mix of students, and with appropriate backgrounds.

- Good student math skills made Stella and NetLogo intuitive.

- TA involvement made for higher quality projects.

- Next time
 - No MatLab (too ambitious)
 - Start projects earlier