An Introductory CS Course for Students in the Sciences

Nathan Sprague
Computer Science Program
Kalamazoo College

SECANT Workshop, Purdue University, Nov. 15, 2007
Kalamazoo College

- Undergraduate only liberal arts college.
- Approx. 1,250 students, 100 faculty.
- Ranks 18th nationally for the percentage of graduates who go on to earn doctoral degrees.*

Some specific disciplines:
- Life Sciences 4th
- Chemistry 8th
- Physical Sciences 13th
- Sciences and Engineering 12th
- Computer Science 25th
- Mathematics 30th

*Higher Education Data Sharing (HEDS) Consortium, 2004
Motivation for Designing a New Course

- Some enrollment figures for our CS0 course COMP105:
 - Fall 1998: 75
 - Fall 2001: 50
 - Fall 2007: 9
Motivation for COMP108

- Computational tools and computational thinking are becoming increasingly important in the sciences.
- Very few science majors were taking any CS courses.
- The courses we offered were not ideal for that audience:
 - COMP105 – Essentially a CS survey course.
 - COMP110 – Intensive Java Programming course.
COMP108: Introduction to Scientific Computing

- An intro CS course with a focus on scientific applications.

- Theme:
 - If a student is joining a computationally focused research group, what skills would they need to get started quickly?

- No prerequisites.

- Taught in Fall ’06, currently being taught again.
COMP108 Topics

- Programming. (mostly MATLAB, some C)
 - Modeling and Data Analysis

- Core CS Concepts.
 - Algorithm analysis and design.
 - Intractable vs. tractable problems.
 - Computer organization.
 - Computer representations of data:
 - Numbers, images, audio, programs.

- Scientific Tools:
 - LaTeX
 - Unix
Many class sessions are 20-30 minutes of lecture followed by 50-60 minutes of “mini-lab”.

Occasional homework assignments.

2 midterms.

3 outside projects – each includes a programming portion and a written report.

- #1 – Modeling.
- #2 – Data analysis.
- #3 – Final project selected by student.
Project #1 – Lotka-Volterra Dynamics on a Grid

- We discuss:
 - \(\frac{dV}{dt} = \alpha V - \beta VP \)
 - \(\frac{dP}{dt} = \delta VP - \gamma P \)

- They implement a grid based model with similar dynamics*.

Project #2 – Clustering Gene Microarray Expression Data

- We read:

- Students reproduce those results on the same data set using K-Means clustering.
Project #2 – Clustering Gene Microarray Expression Data

- Example Clusters:
Final Project

Some Examples

- Automatic music transcription.
- MATLAB music player.
- Parachute modeling.
- Sequence based analysis of flu virus evolution.
- Analysis of whale sighting data.
- Analysis of homerun statistics.
- Investigating fractals.
- Financial Analysis of big three auto makers.
Results: The Positive

- Anecdotally, science students seem to find the course valuable:
 - Senior biology major: “I really enjoyed this course and will definitely be taking more computer science courses after I graduate in hopes of being able to incorporate it into my graduate studies.”
 - Sophomore physics major was accepted for an REU at Caltech to work on the LIGO project, in part because of her MATLAB experience.

- Overall, students who completed the course thought it was valuable:
 - Average course evaluation 4.22/5.
 - Typical average evaluation for our CS0 courses 3.8/5.
Challenges: Enrollment

- Fall ’06 – 14 students enrolled, 2 withdrew.
- Fall ’07 – 8 enrolled, 0 withdrew (so far).
- Science students have very tight schedules:
 - Extensive general education requirements.
 - Around 80% study abroad.
Challenges: Mixed Audience

- Humanities majors fulfilling general education requirements.
 - “At least it isn’t a math class!”
- First year CS majors.
- Senior science majors.
Challenges: Appropriate Projects and Exercises

- Goal is to avoid “toy” projects.
- My own area is not really computational science.
Moving Forward

- More outreach to science faculty.
- Maybe drop C?